RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

FIRST YEAR [2018-21] B.A./B.Sc. FIRST SEMESTER (July – December) 2018 Mid-Semester Examination, September 2018

Date : 24/09/2018 Time : 11 am - 1pm

COMPUTER SCIENCE (Honours)

Paper: I

Full Marks : 50

[Use a separate Answer Book for each group]

<u>GROUP – A</u>

	Answ	er any three questions:	(3 × 5)
1.	Define algorithm. State the characteristics of an algorithm.		
2.	a)	Write an algorithm to count total number of even digits in a given number.	3
	b)	When does $p \equiv q$ become true?	1
	c)	Express " p NAND q " by using other logical operators.	1
3.	a)	What is an XS-3 Gray Code? Give suitale example.	2
	b)	What is the number of parity bits in a12-bit Hamming Code?	1
	c)	Code AK47 in ASCII.	1
	d)	Detect and correct error, if any, in the even parity Hamming Code word "0111110" and	
		write the correct code.	1
4.	a)	Draw a logic diagram that implements	
		$A = (X_1 \odot X_2) \oplus (X_3 \odot X_4) + (X_4 \oplus X_5) \odot (X_6 \oplus X_7).$	3
	b)	Define absorption law.	1
	c)	State De Morgan's theorem.	1
5.	a)	What is principle of duality?	2
	b)	Show that	
		$A\overline{B}C + B + B\overline{D} + AB\overline{D} + \overline{A}C = B + C$	2
	c)	Which logical operators form a functionally complete set and why?	1

<u>GROUP – B</u>

Answer **any five** questions: (5×7) 6. a) What is the decimal equivalent value of 11000011 in

- (i) Unsigned integer representation.
- (ii) Signed 2's complement representation.
- (iii) Signed integer representation.

	b)	Perform $(7)_{10} \div (2)_{10}$ using restoring division method. Also draw the flowchart for the	
		operation.	4+3
7.	a)	Design a 1-bit magnitude comparator circuit.	
	b)	Perform $X = ((A+B)*C)/D$ using one address and zero address instruction format.	3+4
8.	a)	A computer has an 4GB of memory with 64 bit word sizes. Each block of memory stores	
		16 words. The computer has a direct-mapped cache of 128 blocks. What is the address format?	
	b)	Derive the characteristic equation of a S-R flip-flop.	3+4
9.	a)	Design a combinational logic circuit to produce the 2's complement of a 3-bit binary number.	
	b)	Implement a full subtractor using a suitable decoder and necessary logic gates.	
	c)	What is implied or implicit addressing mode?	3+3+1
10.	a)	Draw and explain data flow of fetch cycle in brief.	
	b)	Implement the following logic function:	
		$F(x, y, z) = x \oplus y \oplus z$ using a 4:1 multiplexer.	4+3
11.	a)	How can a demultiplexer be realized using a decoder?	
	b)	Write the practical uses of various types of ROMs.	
	c)	Design 128 × 8 RAM using 32 × 8 RAMs and other necessary logic gates or decoders.	2+2+3
12.	a)	Design a combinational logic circuit with fours inputs A, B, C and D that will produce	
		output lonly when two adjacent input variables are 1's. A and D are also to be treated as	
		adjacent.	
	b)	What is bus arbitration?	
	c)	Why is address bus bidirectional?	3+2+2

_____ × _____